martes, 16 de febrero de 2010

Bioenergética Mitocondrial.

La fosforilación oxidativa mitocondrial engloba las reacciones que llevan a la síntesis de ATP utilizando la energía disponible tras la oxidación de sustratos en la cadena respiratoria. El acoplamiento de los dos procesos se realiza a través del gradiente de protones que es generado por la cadena respiratoria.

Las proteínas desacoplantes (abreviado "UCP", del inglés "uncoupling protein") son proteínas de la membrana interna mitocondrial cuya función biológica es la disipación controlada del gradiente de protones. Existe un gran número de procesos que parecen requerir de la participación de las UCPs. Así, este mecanismo disipador de energía es utilizado por los mamíferos para mantener la temperatura corporal cuando están expuestos al frío e incluso para quemar el exceso de calorías ingeridas en la dieta. De modo más reciente se ha descrito que las UCPs pueden jugar un papel importante en el control de la secreción de insulina o que su actividad reduce la producción de especies reactivas del oxígeno siendo, por tanto, un mecanismo de defensa frente al estrés oxidativo. Durante estos últimos años se ha puesto de manifiesto que los genes que codifican proteínas desacoplantes tienen una distribución muy amplia, habiéndose encontrado no sólo en animales sino también en plantas e incluso en organismos unicelulares. Esta amplia presencia sugiere que el desacoplamiento de la fosforilación oxidativa es una estrategia adoptada de modo general por los seres vivos para regular la eficiencia energética.

CADENA RESPIRATORIA.

La cadena de transporte de electrones es una serie de transportadores de electrones que se encuentran en la membrana plasmática de bacterias, en la membrana interna mitocondrial o en las membranas tilacoidales, que median reacciones bioquímicas que producen adenosina trifosfato (ATP), que es el compuesto energético que utilizan los seres vivos. Sólo dos fuentes de energía son utilizadas por los organismos vivos: reacciones de óxido-reducción (redox) y la luz solar (fotosíntesis). Los organismos que utilizan las reacciones redox para producir ATP se les conoce con el nombre de quimioautótrofos, mientras que los que utilizan la luz solar para tal evento se les conoce por el nombre de fotoautótrofos. Ambos tipos de organismos utilizan sus cadenas de transporte de electrones para convertir la energía en ATP.

Se han identificado cuatro complejos enzimáticos unidos a membrana interna mitocondrial. Tres de ellos son complejos transmembrana, que están embebidos en la membrana interna, mientras que el otro esta asociado a membrana. Los tres complejos transmembrana tienen la capacidad de actuar como bombas de protones. El flujo de electrones global se esquematiza de la siguiente forma:

NADH → Complejo I → Q → Complejo III → Citocromo c → Complejo IV → O2

Complejo II

Complejo I.

El "complejo I" o NADH deshidrogenasa o NADH:ubiquinona oxidoreductasa (EC 1.6.5.3) capta dos electrones del NADH y los transfiere a un transportador liposoluble denominado ubiquinona (Q). El producto reducido, que se conoce con el nombre de ubiquinol (QH2) puede difundir libremente por la membrana. Al mismo tiempo el Complejo I transloca cuatro protones a través de membrana, produciendo un gradiente de protones.

El NADH es oxidado a NAD+, reduciendo al FMN a FMNH2 en un único paso que implica a dos electrones. El siguiente transportador de electrones es un centro Fe-S que sólo puede aceptar un electrón y trasferirlo a la ubiquinona generando una forma reducida denominada semiquinona. Esta semiquinona vuelve a ser reducido con el otro electrón que quedaba generando el ubiquinol, QH2. Durante este proceso, cuatro protones son translocados a través de la membrana interna mitocondrial, desde la matriz hacia el espacio intermembrana.

Complejo II.

El "Complejo II" o Succinato deshidrogenasa, no es un bomba de protones. Además es la única enzima del ciclo de Krebs asociado a membrana. Este complejo dona electrones a la ubiquinona desde el succinato y los transfiere vía FAD a la ubiquinona.

Complejo III.

El "complejo III" o Complejo citocromo bc1, obtiene dos electrones desde QH2 y se los transfiere a dos moléculas de citocromo c, que es un transportador de electrones hidrosoluble que se encuentra en el espacio intermembrana de la mitocondria. Al mismo tiempo, transloca dos protones a través de la membrana por los dos electrones transportados desde el ubiquinol.

Complejo IV.

El complejo IV o Citocromo c oxidasa, capta cuatro electrones de las cuatro moléculas de citocromo c y se transfieren al oxígeno (O2), para producir dos moléculas de agua (H2O). Al mismo tiempo se translocan cuatro protones al espacio intermembrana, por los cuatro electrones. Además "desaparecen" de la matriz 4 protones que forman parte del H2O.

Acoplamiento con la fosforilización oxidativa.

La hipótesis del acoplamiento quimiosmótico, lo que el valió el premio Nobel de química a Peter D. Mitchell, explica que la cadena de transporte de electrones y la fosforilación oxidativa están acopladas por el gradiente de protones. El flujo de protones crea un gradiente de pH y un gradiente electroquímico. Este gradiente de protones es usado por la ATP sintasa para formar ATP vía la fosforilación oxidativa. La ATP sintasa actúa como un canal de iones que "devuelve" los protones a la matriz mitocondrial. Durante esta vuelta, la energía libre de Gibbs producida durante la generación de las formas oxidadas de los transportadores de electrones es liberada. Esta energía es utilizada por la síntesis de ATP, catalizada por el componente F1 del complejo FOF1 ATP sintasa.
BIBLIOGRAFÍA.

http://www.cib.csic.es/es/grupo.php?idgrupo=39
http://es.wikipedia.org/wiki/Cadena_de_transporte_de_electrones

No hay comentarios:

Publicar un comentario